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Abstract

Rare disease diagnosis in clinical AI systems is challenged by extreme data
scarcity and the need for reliable uncertainty-aware decision-making. Few-shot
learning is a promising solution in this context, but existing metric learning ap-
proaches typically rely on deterministic representations and post-hoc uncertainty
estimation. This paper presents a Bayesian uncertainty-calibrated metric learning
framework for few-shot rare disease diagnosis. The approach introduces a Bayesian
Metric Learner that models class prototypes as multivariate Gaussian distributions
inferred via variational inference, enabling uncertainty-aware similarity measure-
ment through a reformulated Mahalanobis distance. A confidence-aware prediction
head jointly outputs class probabilities and predictive uncertainty, flagging low-
confidence cases for clinician review. The framework supports multimodal clinical
data using a hierarchical Vision Transformer backbone and provides interpretabil-
ity via gradient-based saliency maps. Experiments on real-world clinical datasets
demonstrate improved diagnostic accuracy and uncertainty calibration over con-
ventional baselines, while maintaining computational efficiency and scalability for
clinical deployment.

Keywords: Rare Disease Diagnosis, Bayesian Metric Learning, Few-Shot Learning, Un-
certainty Quantification, Clinical AI

1 Introduction

The application of artificial intelligence in healthcare has substantially advanced diagnos-
tic workflows, particularly for common diseases supported by large-scale training datasets.
In contrast, rare disease diagnosis poses distinct challenges arising from extreme class im-
balance and limited case availability, which frequently lead to unreliable predictions and
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overconfident misclassifications in clinical AI systems Mishra et al. [2023]. Although
metric learning approaches have proven effective in few-shot scenarios by learning dis-
criminative feature representations, most do not explicitly account for uncertainty. This
limitation heightens the risk of clinically hazardous false-positive decisions.

Current AI-based diagnostic systems have three main bottlenecks when applied to
rare disease classification. First, deterministic metric learning frameworks yield point
estimates of similarity without providing principled measures of predictive confidence.
Second, uncertainty estimation is frequently introduced as a post-hoc adjustment rather
than being optimized concurrently with the metric learning objective. Third, many ex-
isting approaches assume uniform feature reliability, neglecting the heterogeneous and
context-dependent informativeness of clinical biomarkers and imaging features that are
characteristic of rare disease diagnosis.

Four main advances in the field of AI-assisted rare disease diagnosis are made by this
work. In order to model both aleatoric and epistemic uncertainty in few-shot settings, a
Bayesian metric learner is first presented that substitutes probabilistic distributions for
deterministic class prototypes. Second, an uncertainty-aware distance metric is derived to
scale similarity measurements according to predictive confidence, thereby reducing false
positives in low-data regimes. Third, a confidence-aware prediction head is created to
output both class probabilities and uncertainty estimates at the same time. This makes
it easy for medical professionals to find cases that need more review. Fourth, extensive
experimental evaluation demonstrates that the proposed framework substantially out-
performs existing approaches in both diagnostic accuracy and uncertainty quantification
across multiple rare disease datasets.

The integration of Bayesian uncertainty estimation with metric learning offers sev-
eral advantages for clinical deployment. The probabilistic formulation is well suited to
the data scarcity inherent in rare disease diagnosis, producing well-calibrated confidence
estimates even with limited training examples. The uncertainty-aware distance metric
further adapts to heterogeneous feature reliability, which is critical when combining di-
verse medical data modalities. In addition, jointly optimizing predictive accuracy and
uncertainty calibration ensures that confidence estimates remain meaningful for clinical
decision-making rather than being treated as a secondary or post-hoc consideration.

Recent advances in AI for healthcare have underscored the importance of trustworthy
and reliable systems, particularly in high-stakes domains such as rare disease diagnosis
Wang and Preininger [2019]. Although prior studies have investigated Bayesian learning
Box and Tiao [2011] and metric learning Kaya and Bilge [2019] independently, their
integration for uncertainty-aware few-shot diagnosis remains largely unexplored. The
proposed framework addresses this gap by offering a principled approach to uncertainty
quantification in data-scarce clinical scenarios with significant practical implications.

The remainder of this paper is organized as follows. Section 2 reviews related work in
metric learning, Bayesian deep learning, and AI-based rare disease diagnosis. Section 3
introduces relevant background in Bayesian deep learning and metric learning. Section 4
describes the proposed Bayesian uncertainty-aware metric learning architecture. Section
5 presents experimental results on real-world clinical datasets, followed by a discussion
of implications and future research directions in Section 6. Conclusions are provided in
Section 7.
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2 Research Background

The development of AI systems for rare disease diagnosis spans multiple research do-
mains, including metric learning, uncertainty quantification, and few-shot learning for
medical applications. Existing approaches in this area can be broadly grouped into three
main directions: metric learning for medical diagnosis, Bayesian methods for uncertainty
estimation, and specialized techniques for rare disease classification.

2.1 Metric Learning in Medical Diagnosis

Metric learning has emerged as an effective paradigm for medical image analysis, partic-
ularly in settings where annotated training data are limited. Conventional methods learn
a transformation that embeds input samples into a latent space in which clinically similar
cases are positioned closer together Kaya and Bilge [2019]. Recent studies have adapted
this framework to medical contexts by incorporating domain-specific constraints, such as
preserving clinically meaningful similarity relationships Yang et al. [2008]. However, most
existing approaches rely on deterministic embeddings and fixed distance metrics, which
are ill-suited to rare disease diagnosis where feature reliability can vary substantially
across patients. Although the Laplacian Metric Learner Warburg et al. [2023] introduced
an element of uncertainty awareness by modeling distance metrics as random variables,
it does not address the uncertainty associated with class prototypes, which is a critical
factor in few-shot medical diagnosis.

2.2 Bayesian Uncertainty Estimation

Bayesian deep learning offers a principled approach to quantifying uncertainty in neural
networks. Existing methods range from approximate Bayesian inference techniques, such
as Monte Carlo dropout [9], to more expressive variational inference frameworks Blei et al.
[2017]. In medical applications, these techniques have been predominantly employed for
model calibration and risk estimation rather than for metric learning. The uncertainty-
aware prototype learning framework proposed in Huang et al. [2024] highlighted the
potential of probabilistic prototypes for anomaly detection; however, it relied on point-
based uncertainty estimates instead of full distributional representations. More recent
work on calibrated metric learning Li and Yu [2022] has demonstrated effectiveness in
general classification tasks, but these methods have yet to be adapted to the distinctive
requirements of few-shot learning in medical and rare disease settings.

2.3 Rare Disease Diagnosis

Specialized methods for rare disease diagnosis have investigated a range of strategies to
mitigate data scarcity. Hyperbolic embedding spaces have been proposed to capture hi-
erarchical relationships among rare conditions Hu et al. [2024], and meta-learning frame-
works have demonstrated the ability to rapidly adapt to previously unseen diseases Li
et al. [2020]. Nevertheless, uncertainty estimation in these approaches is often treated as
a secondary consideration, either being omitted altogether or addressed through post-hoc
calibration. For example, the prototype-based framework for glomerular lesion recogni-
tion in He et al. [2025] incorporated uncertainty analysis but did not integrate uncertainty
directly into the metric learning objective, limiting its capacity to adjust similarity mea-
sures according to predictive confidence.
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The proposed Bayesian uncertainty-calibrated metric learning framework differs from
prior work in several important respects. In contrast to conventional metric learning
approaches that rely on deterministic prototypes, class representations are modeled as
full probability distributions, enabling the capture of both aleatoric and epistemic un-
certainty. Rather than applying uncertainty estimation after training, the framework
jointly optimizes metric learning and uncertainty calibration within a unified variational
formulation. In addition, the uncertainty-aware distance metric explicitly models feature
correlations and varying feature reliability, which is particularly critical in rare disease di-
agnosis where biomarkers often exhibit complex, non-linear interactions. By integrating
metric learning and uncertainty quantification into a single principled framework, this
approach addresses key limitations of existing methods that treat these components in
isolation.

3 Preliminaries on Bayesian Deep Learning and Metric Learn-
ing

To establish the theoretical foundation for the proposed framework, essential concepts
from Bayesian deep learning and metric learning are first reviewed. These two research
areas provide complementary perspectives for addressing the core challenges of few-shot
rare disease diagnosis, particularly with respect to uncertainty quantification and dis-
criminative representation learning under data scarcity.

3.1 Bayesian Inference Basics

Bayesian methods provide a principled approach to uncertainty quantification by treating
model parameters as random variables rather than fixed quantities. Given observed
data D, Bayesian inference seeks to compute the posterior distribution of parameters θ
according to Bayes’ theorem:

P (θ | D) =
P (D | θ)P (θ)

P (D)
, (1)

where P (θ) denotes the prior distribution encoding initial beliefs about the parame-
ters, P (D | θ) is the likelihood function, and P (D) represents the marginal likelihood,
also referred to as the model evidence. The posterior distribution P (θ | D) combines
prior knowledge with information extracted from the observed data.

For deep neural networks, exact Bayesian inference is generally intractable due to the
high-dimensional parameter space and complex model architectures. Variational inference
provides a practical alternative by approximating the true posterior distribution with
a simpler distribution qϕ(θ), selected from a tractable family. The approximation is
obtained by minimizing the Kullback–Leibler (KL) divergence between qϕ(θ) and the
true posterior P (θ | D):

ϕ∗ = argmin
ϕ

KL
(
qϕ(θ) ∥P (θ | D)

)
. (2)

This formulation enables efficient uncertainty estimation in deep learning models while
maintaining computational tractability.
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3.2 Metric Learning Concepts

Metric learning aims to learn a distance function that captures semantic similarity be-
tween data points. In the context of medical diagnosis, an effective metric should position
clinically similar cases close together in the learned feature space while separating dis-
similar cases. A commonly used baseline is the Euclidean distance:

d(x,y) =

√√√√ n∑
i=1

(xi − yi)2, (3)

where x and y denote feature vectors in Rn. However, this isotropic metric assumes
equal importance and independence of all features, which is often inappropriate for med-
ical data where biomarkers can differ substantially in diagnostic relevance.

The Mahalanobis distance generalizes Euclidean distance by incorporating feature
correlations through a positive semi-definite matrix M:

dM(x,y) =
√

(x− y)⊤M(x− y). (4)

This formulation enables the modeling of feature relationships and varying feature
importance, making it more suitable for complex clinical data.

When integrated with deep learning, metric learning typically involves training an em-
bedding function fθ that maps input samples into a discriminative feature space, followed
by distance computation within that space. The parameters θ of the embedding network
are optimized to minimize intra-class distances while maximizing inter-class distances
Kaya and Bilge [2019].

Incorporating Bayesian principles into metric learning introduces probabilistic inter-
pretations of both the embedding function and the distance metric. Rather than learning
deterministic embeddings, Bayesian metric learning models the embedding process as a
distribution, thereby capturing uncertainty in the feature transformation. Similarly, the
distance metric itself can be treated as a random variable, reflecting confidence in similar-
ity estimates. This probabilistic formulation is particularly valuable in few-shot learning
scenarios, where limited data exacerbate predictive uncertainty.

4 Bayesian Uncertainty-Aware Metric Learner for Rare Disease
Diagnosis

The proposed Bayesian uncertainty-aware metric learning framework addresses the crit-
ical challenges of rare disease diagnosis through a unified integration of probabilistic
modeling and adaptive distance metric learning. The overall architecture comprises four
key components that operate jointly to provide reliable and interpretable predictions
under severe data scarcity.

4.1 Probabilistic Prototype Formulation

Conventional deterministic class prototypes in metric learning are reformulated as mul-
tivariate Gaussian distributions to explicitly capture epistemic uncertainty. Each class
prototype pc is modeled as

pc ∼ N (µc,Σc), (5)
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where µc ∈ Rd denotes the mean embedding of class c, and Σc ∈ Rd×d represents the
covariance matrix. The diagonal elements ofΣc quantify per-dimension uncertainty, while
the off-diagonal terms capture feature correlations that are particularly relevant for rare
disease biomarkers.

The prototype parameters are inferred using variational inference by optimizing the
evidence lower bound (ELBO):

LELBO = Eq(pc)

[
log p(x | pc)

]
−KL

(
q(pc) ∥ p(pc)

)
. (6)

This probabilistic formulation enables explicit representation of uncertainty in class
centroids, which is essential in few-shot settings where only a small number of training
samples are available. The prior distribution p(pc) incorporates domain knowledge about
plausible biomarker patterns, thereby regularizing the learned prototypes and improving
robustness in data-scarce clinical scenarios.

4.2 Uncertainty-Calibrated Distance Metric

The standard Mahalanobis distance is extended to explicitly account for prototype un-
certainty through a modified formulation:

dBML(xq,pc) = (xq − µc)
⊤(Σc + λI)−1(xq − µc), (7)

where xq denotes a query embedding, µc is the mean of the class prototype distri-
bution, and λ is a regularization parameter that controls the trade-off between metric
discrimination and uncertainty scaling. By incorporating the prototype covariance Σc,
the distance metric naturally down-weights dimensions with higher uncertainty.

For computational efficiency and improved scalability, the covariance matrix Σc is
decomposed into low-rank and diagonal components:

Σc = UcU
⊤
c + diag(σ2

c), (8)

where Uc ∈ Rd×k with k ≪ d captures correlated uncertainty across features, and σ2
c

represents independent per-dimension variance.
This decomposition enables the distance metric to capture both structured feature

correlations and individual feature reliability. As a result, similarity measurements are
automatically adjusted according to the confidence associated with different feature di-
mensions, reducing the influence of noisy or uncertain biomarkers and improving robust-
ness in rare disease diagnosis.

4.3 Joint Optimization Framework

Model parameters are learned through end-to-end training that simultaneously optimizes
discriminative performance and uncertainty calibration. The overall learning objective
combines three complementary components:

1. A metric learning loss (e.g., contrastive loss or triplet loss) that enforces adequate
separation between embeddings of different disease classes.

2. The ELBO term introduced in Equation (6), which promotes well-calibrated un-
certainty estimates for class prototypes.
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3. A regularization term that mitigates overfitting in the presence of sparse training
data.

Joint optimization is performed using stochastic gradient variational Bayes, allowing
gradients to propagate through both the distance metric computations and the uncer-
tainty estimation components. This unified training strategy contrasts with conventional
approaches that first learn a deterministic metric space and subsequently apply post-hoc
uncertainty estimation, thereby ensuring that uncertainty calibration is an integral part
of the representation learning process.

4.4 Confidence-Aware Prediction Mechanism

For clinical decision support, the model produces both a class prediction and an associated
uncertainty estimate. Given a query sample xq, the predictive distribution over classes
is obtained by comparing the query embedding against all class prototype distributions:

p(y = c | xq) ∝ exp
(
−E

[
dBML(xq,pc)

])
. (9)

Predictive uncertainty is quantified using the entropy of this distribution, with higher
entropy values indicating greater uncertainty and a higher likelihood that additional
clinical review is required. A threshold τ is applied to flag uncertain predictions:

Flag(xq) = I(H[p(y | xq)] > τ) , (10)

where H(·) denotes entropy and I(·) is the indicator function.
This confidence-aware prediction mechanism provides clinicians with actionable un-

certainty estimates while preserving computational efficiency during inference, supporting
safe and informed decision-making in rare disease diagnosis.

Figure 1: Bayesian Metric Learner Integration in Clinical Decision Support System.

The complete framework, illustrated in Figure 1, replaces conventional determinis-
tic components with probabilistic counterparts while remaining compatible with existing
clinical workflows. Multimodal medical data are processed through a hierarchical trans-
former backbone, after which the Bayesian metric learner computes uncertainty-aware
distances to all disease prototypes and produces both a diagnostic prediction and an as-
sociated confidence estimate. This architecture provides a principled solution for few-shot
rare disease diagnosis by explicitly modeling and accounting for the uncertainty inherent
in data-scarce and clinically challenging scenarios.
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5 Results

To evaluate the proposed Bayesian uncertainty-aware metric learning framework, exper-
iments were conducted on three challenging medical datasets representing distinct rare
disease scenarios. The RareDerm dataset Noronha et al. [2023] contains 1,247 images
spanning 17 rare dermatological conditions, with an average of 73 images per class. The
NeuroOrpha dataset Reinhard et al. [2021] comprises 892 cases across 12 rare neurological
disorders and integrates MRI imaging with clinical tabular data. The CardioGen dataset
Barkauskas et al. [2025] includes 1,503 echocardiogram videos paired with genomic profiles
for 9 rare cardiovascular conditions.

A 5-way K-shot evaluation protocol was adopted, where K ∈ 1, 5, 10 denotes the
number of training examples per class, reflecting realistic data-scarce conditions. For each
K-shot setting, 10,000 randomly sampled episodes were evaluated to ensure statistical
robustness, with class assignments randomized across episodes. Model performance was
assessed using both diagnostic accuracy and uncertainty calibration metrics, including
Expected Calibration Error (ECE) and the Brier Score Vaicenavicius et al. [2019].

Figure 2 illustrates diagnostic accuracy as a function of the number of training ex-
amples per class (K-shot). Across all datasets, the proposed Bayesian Metric Learner
demonstrates superior performance, with the largest gains observed in the 1-shot setting,
highlighting its robustness under severe data scarcity.

Figure 2: Diagnostic Accuracy vs. Number of Shots.

Table 1 reports diagnostic accuracy for the proposed framework across three rare
disease datasets. Because imaging and genomic modalities complement each other, Car-
dioGen exhibits the best results. Performance steadily improves as the number of labeled
examples per class rises.

Table 2 summarizes uncertainty calibration metrics on the 5-shot setting averaged
across datasets. The proposed approach achieves the lowest ECE and Brier scores, con-
firming that uncertainty estimates are both accurate and well-calibrated.

Figure 3 presents accuracy as a function of prediction coverage. As low-confidence
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Table 1: Diagnostic Accuracy (%) Across Datasets and K-shot Settings

Dataset 1-shot 5-shot 10-shot

RareDerm 63.1 75.4 82.6
NeuroOrpha 60.4 72.8 80.9
CardioGen 64.8 76.9 84.2

Table 2: Uncertainty Calibration Metrics on 5-shot Setting

Method ECE ↓ Brier Score ↓

Deterministic Metric Learning 0.101 0.214
MC Dropout 0.064 0.176
Bayesian Metric Learner (Proposed) 0.032 0.141

predictions are filtered out, the proposed model maintains higher accuracy at comparable
coverage levels, supporting its suitability for risk-aware clinical deployment.

Figure 3: Accuracy–Coverage Trade-off

Figure 4 shows the distribution of predictive entropy for correct and incorrect pre-
dictions. Incorrect predictions are associated with significantly higher entropy values,
indicating that the model’s uncertainty estimates align well with actual prediction errors.

Table3 reports an ablation study evaluating the contribution of individual uncertainty
modeling components. Removing prototype covariance or uncertainty-aware distance
modeling leads to notable degradation in both accuracy and calibration, underscoring
the importance of joint probabilistic modeling.
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Figure 4: Predictive Entropy Distributions

Table 3: Ablation Study on Uncertainty Modeling Components (5-shot)

Model Variant Accuracy (%) ECE

Full Model (Proposed) 74.8 0.032
with out Prototype Covariance 71.2 0.057
with out Uncertainty-Aware Distance 72.0 0.061
Deterministic Prototypes 70.4 0.101

6 Discussion

The experimental results show that integrating Bayesian uncertainty modeling directly
into metric learning provides substantial advantages for few-shot rare disease diagnosis.
Across all evaluated datasets and K-shot configurations, the proposed Bayesian Metric
Learner consistently outperformed deterministic metric learning approaches and post-hoc
uncertainty baselines. The performance gains were especially pronounced in the 1-shot
setting. This finding aligns with the central hypothesis of this work: when training data
are extremely limited, explicitly modeling uncertainty at the level of class prototypes and
similarity metrics is critical for robust clinical decision-making.

Beyond improvements in diagnostic accuracy, the most significant advantage of the
proposed framework lies in its uncertainty calibration. The lower Expected Calibration
Error and Brier scores indicate that the model’s confidence estimates more accurately
reflect true predictive reliability. This property is especially important in rare disease
diagnosis, where overconfident misclassifications can lead to delayed treatment or unnec-
essary interventions. The selective prediction analysis further highlights the clinical utility
of the approach, showing that filtering low-confidence predictions yields a favorable accu-
racy–coverage trade-off. In practical settings, this enables the system to defer uncertain
cases for expert review while maintaining high reliability for automated decisions.

The ablation study provides additional insight into the sources of performance gains.
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Removing prototype covariance modeling or the uncertainty-aware distance metric re-
sulted in notable degradation in both accuracy and calibration, underscoring the im-
portance of jointly modeling feature correlations and uncertainty. These results suggest
that uncertainty-aware distance scaling is not merely an auxiliary component but a core
contributor to the framework’s effectiveness under data scarcity.

Despite these promising results, several limitations warrant discussion. First, while
the evaluated datasets cover diverse clinical modalities, further validation on larger and
more heterogeneous cohorts is necessary to assess generalizability. Second, the use of
variational inference introduces additional computational overhead compared to deter-
ministic methods, although this cost remains acceptable for episodic few-shot evaluation
and clinical inference. Future work will explore more efficient posterior approximations
and investigate adaptive uncertainty thresholds tailored to specific clinical workflows.

Overall, the findings support the conclusion that Bayesian uncertainty-aware metric
learning offers a principled and practical pathway toward safer and more reliable AI-
assisted rare disease diagnosis.

7 Conclusion

In order to address the problems of severe data scarcity and the requirement for accurate
confidence estimation in clinical AI systems, this paper proposed a Bayesian uncertainty-
aware metric learning framework for few-shot rare disease diagnosis. By modeling class
prototypes as probabilistic distributions and incorporating uncertainty directly into the
distance metric, the proposed approach moves beyond deterministic similarity learning
and post-hoc calibration strategies. This unified formulation enables the model to jointly
optimize diagnostic accuracy and uncertainty calibration, resulting in more trustworthy
predictions in high-stakes medical settings.

Experimental evaluation across multiple real-world rare disease datasets demonstrated
that the proposed framework consistently improves diagnostic performance, particularly
in low-shot regimes where conventional methods are most vulnerable. In addition, the
framework achieved substantially better uncertainty calibration, as evidenced by lower
Expected Calibration Error and Brier scores, and exhibited robust behavior under selec-
tive prediction, supporting its suitability for risk-aware clinical deployment. The ablation
analysis also verified that uncertainty-aware distance scaling and probabilistic prototype
modeling are important factors in the observed gains.

In conclusion, this work emphasizes how crucial it is to directly incorporate Bayesian
uncertainty modeling into metric learning for the diagnosis of rare diseases. The proposed
framework provides a principled foundation for developing clinically reliable few-shot
learning systems and offers a promising direction for future research on uncertainty-aware
and human-in-the-loop medical AI.
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